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The Perron Method

In this lecture we show that one can show existence of solutions using maximum principle alone.

1 . The Perron method.
Recall in the last lecture we have shown the existence of solutions to the Laplace equation

4u = 0 in Ω , u = g on ∂Ω ( 1 )

for the special case of Ω = BR by writing down the explicit formula for the solution. Unfortunately, for
general Ω this is not possible. The Perron method show the existence of the general problem by com-
bining the explicit formula and the maximum principle.

First we recall the following property of subharmonic functions.

• Let Ω ⊂ Rn and f : Ω � [ − ∞ , ∞ ) be upper semicontinuous in Ω and f≡ − ∞ . The function f is
called subharmonic in Ω if

− for all Ω ′ ⊂ ⊂ Ω , the following property holds:
If u is harmonic in Ω ′ , and f 6 u on ∂Ω ′ , then f 6 u in Ω ′ .
or equivalently,

− v (x ) 6 1

| Br |
∫
Br ( x )

u( y) dy for any r > 0 , Br (x ) ⊂ Ω , or equivalently

− v (x ) 6 1

| ∂Br |
∫
∂Br ( x )

u(w ) dS for any r > 0 , Br (x ) ⊂ Ω , or ( not really) equivalently

− if 4v exists, 4v > 0 .

The idea of the Perron method can be best illustrated via the 1 D example: solving

u ′ ′ = 0 in ( 0 , 1 ) ; u( 0) = u0 , u( 1 ) = u1 . ( 2 )

The solution is a straight line connecting ( 0 , u0 ) and ( 1 , u1 ) .
Now let U0 be any function connecting these two points. And we modify U0 as follows. Take any

subinterval ( a , b) , and replace U0

�
( a , b ) by the solution of

u ′ ′ = 0 in ( a , b) ; u( a) = U0 ( a) , u( b) = U0 ( b) . ( 3)

Doing this again and again, we see that the sequence approaches the straight line, which is the solution we
need.

It is hard to make this argument rigorous for general U0 . But if we take U0 to be subharmonic, or
roughly speaking U0

′′ > 0 , then an important observation is that every modification makes the function
larger. On the other hand they are all bounded from above by max (u0 , u1 ) . Therefore there must be an
upper bound and this upper bound is the solution.

This argument can be generalized to higher dimensional problems. We see that we need to guarantee

1 . Modifying any subharmonic function by patching it with harmonic functions;

2 . The modified function is still subharmonic;

3. Subharmonic functions is upper-bounded by its boundary values.

They are indeed true.

Lemma 1 . We have

i. If v ∈ C0 ( Ω) is subharmonic and BR ( y) ⊂ ⊂ Ω , then the harmonic replacement v̄ of v, defiend by

v̄ ( x) ≡





v ( x) x ∈ Ω\BR ( y)

R2 − | x − y | 2
d wdR

∫

∂BR( y )

v ( z )

| z − x | n dSz x ∈ BR( y)
( 4)

is subharmonic in Ω ; Furthermore v 6 v̄ in Ω .



ii. Let v be subharmonic in Ω , if there is x0 ∈ Ω with v (x0 ) = supΩ v (x ) , then v is constant. In partic -
ular, if v ∈ C0 ( Ω) , then v (x ) 6 max∂Ω v ( y) for all x ∈ Ω .

iii. If v1 , � , vk are subharmonic , so is v ≡ max { v1 , � , vk } .

Proof.

i. It is clear that v 6 v̄ in Ω . Now we argue that v̄ is be subharmonic.
Take arbitrary Ω̄ ′ ⊂ ⊂ Ω , and let u be harmonic in Ω ′ with v̄ 6 u on ∂Ω ′ . S ince v 6 v̄ in Ω , v 6 u

on ∂Ω ′ . S ince v is subharmonic, v 6 u in the whole Ω ′ ( this implies v̄ 6 u in Ω ′\BR ( y) ) . In partic-
ular, v 6 u on ∂( Ω ′ ∩ BR( y) ) . S ince both u and v̄ are harmonic in Ω ′ ∩ BR ( y) , we have v̄ 6 u in
there too.

ii. Left as exercise.

iii . Left as exercise. �

Now we turn to the existence of solutions to the problem

4u = 0 in Ω , u = g on ∂Ω . ( 5)

Let Sg be the set of all subharmonic functions which are C0 ( Ω) and are below g on the boundary. We
claim that the upper bound is in fact the solution. First we show that the upper bound is harmonic.

Theorem 2. Let

u(x ) ≡ sup
v ∈ Sg

v (x ) , ( 6)

then u is harmonic in Ω .

Proof. We devide the argument into several steps.

1 . u is well-defined.
To see this, first note that v ≡ min∂Ω g is subharmonic, so Sϕ is not empty; Next note that any

v ∈ Sg , we have v (x ) 6 sup∂Ω g for any x ∈ Ω . Therefore the supreme is well-defined at every point.

2 . Now consider any x ∈ Ω . Let vn be such that lim vn(x ) = u(x ) . By replacing vk by max { v1 , � , vk ,
inf∂Ω g } , we can assume that {vk } is monotonically increasing and bounded from below. Denote by
BR the ball BR( x) ⊂ ⊂ Ω .

Now let v̄k be the harmonic replacements of vk . It is easy to see that v̄k is also monotonically
increasing. S ince v̄k > vk , we must have

lim
k↗∞

v̄k (x ) = u( x) . ( 7)

3. We show that the limit v = limk↗∞ v̄k is harmonic in BR/ 2 . To see this, note that v̄k − v̄l is har-
monic in BR for any k , l . Thus Harnack inequality implies the existence of C such that

| v̄k ( y) − v̄l ( y) | 6 C | v̄k (x ) − v̄l (x ) | ( 8)

for any y ∈ BR/ 2 . As a consequence, the convergence v̄k → v is uniform in BR/ 2 and therefore v
must be harmonic. 1

4. We need to show that v = u in BR/ 2 . S ince u is the supreme, v 6 u . Now if there is x ′ ∈ BR/ 2 such
that u(x ′) > v (x ′) , since u = supv ∈ Sg v , there is ṽ subharmonic such that u(x ′) > ṽ ( x ′) > v (x ′) . Set
wk = max { vk , ṽ } . Then the harmonic replacements w̄k convergens to a harmonic function w in
BR/ 2 satisfying

v 6 w 6 u , ( 9)

which implies

v (x0 ) = w (x0 ) . ( 1 0)

1 . To see this , recall that v is harmonic when it has the mean value property, which is kept by uniform convergence.



On the other hand we have v (x0 ) = u(x0 ) which gives

1∣∣ BR/ 2

∣∣
∫

BR/ 2

w ( y) dy > 1∣∣ BR/ 2

∣∣
∫

BR/ 2

v ( y) dy = v ( x0 ) = w ( x0 ) =
1∣∣ BR/ 2

∣∣
∫

BR/ 2

w ( y) dy. ( 1 1 )

The only possibility is v ≡ w in BR/ 2 . But this gives a contradiction as by assumption

w ( x ′) > ṽ (x ′) > v ( x ′) . ( 1 2 )

Thus ends the proof. �

The next task is to show that u satisfies the boundary condition. That is

lim
x→ x 0 ∈ ∂Ω

u(x ) = g( x0 ) . ( 1 3)

We use the concept of a barrier.
Recall that a function f is superharmonic if − f is subharmonic. Note that we can replace all “subhar-

monic” in the above construction by “superharmonic” and obtain u( x) = inf v where the infimum is over all
superharmonic functions whose boundary value > g .

Definition 3.

a ) Let ξ ∈ ∂Ω . A function β ∈ C0 ( Ω) is cal led a barrier at ξ with respect to Ω if

i. β > 0 in Ω\{ ξ } , β( ξ) = 0 .

ii. β is superharmonic in Ω .

b ) ξ ∈ ∂Ω is called regular if there existes a barrier β at ξ with respect to Ω .

Remark 4. If β is a “local” barrier at ξ with respect to U ∩ Ω , then for any Bρ( ξ) ⊂ ⊂ U ,

β̃ ≡




m ≡ inf

U \B ρ ( ξ )
β x ∈ Ω̄\Bρ( ξ)

min (m, β) x ∈ Ω̄ ∩ Bρ( ξ)
( 1 4)

is a barrier at ξ with respect to Ω .
To see this, take any Ω ′ ⊂ ⊂ Ω , and let u be harmonic in Ω ′ with boundary value β̃ . We need to show

that u 6 β̃ in Ω ′ . S ince β̃ 6 m , u 6 m in Ω ′ . Next we show u 6 β in Ω ′ ∩ Bρ( ξ) . At the boundary, we have

u = β̃ 6
{

min (m, β) 6 β on ∂Ω ′ ∩ Bρ
m = inf

U \B ρ ( ξ )
β on ∂Bρ ∩ Ω ′

�
u 6 β in Ω ′ ∩ Bρ( ξ) . ( 1 5)

Lemma 5. If ξ is a regular point of ∂Ω and g is continuous at ξ, then u takes g as its boundary value at
ξ, that is

lim
x→ ξ

u(x ) = g( ξ) . ( 1 6)

Proof. The idea is the construct super and subharmonic function from g and the barrier β , which gives
lower and upper bounds of u .

For any ε > 0 , there is δ > 0 such that

| g(x ) − g( ξ) | < ε for all | x − ξ | < δ ;
c β( x) > 2 M ≡ 2 sup

∂Ω
| ϕ | for all | x − ξ | > δ. ( 1 7)

Now consider

v̄ ≡ g( ξ) + ε + c β( x) , v ≡ g( ξ) − ε − c β(x ) . ( 1 8)

We have

v 6 u 6 v ( 1 9)



which gives the convergence estimate. �

Summarizing, we obtain

Theorem 6. Let Ω ⊂ Rn be bounded. The Dirichlet prob lem

4u = 0 in Ω , u = g on ∂Ω ( 20)

is so lvab le for al l continuous boundary values g if and only if all points ξ ∈ ∂Ω are regular.

Proof. We have already done the “if” part. For the “only if” part, we take g0 be such that g( ξ) = 0 while
g( x) > 0 for all other x ∈ ∂Ω . The solution u0 is a barrier due to strong maximum principle. �

2. The alternating method of H. A. Schwartz.
It is important from the numerical point of view and is the foundation of domain decomposition

method.

Theorem 7. Let Ω 1 and Ω2 be bounded domains all of whose boundary points are regular for the
Dirichlet prob lem. Suppose that Ω 1 ∩ Ω2

�
φ and that Ω 1 and Ω2 are of class C1 in some neighborhood of

∂Ω 1 ∩ ∂Ω2 , and that they intersect at a nonzero angle . Then the Dirichlet prob lem fo the Laplace equation
on Ω ≡ Ω 1 ∪ Ω2 is so lvab le for any continuous boundary values.

Proof. We denote γ1 = ∂Ω 1 ∩ Ω2 , γ2 = ∂Ω2 ∩ Ω 1 , Γ1 = ∂Ω 1 \ γ1 , Γ2 = ∂Ω2\ γ2 .

1 . Let M ≡ sup∂Ω g and m ≡ inf∂Ω g . We solve the Dirichlet problem2

4u = 0 in Ω 1 , u =

{
g Γ1

M γ1
. ( 21 )

and obtain u1 , defined on Ω 1 .
Next we solve

4u = 0 in Ω2 , u =

{
g Γ2

u1 γ2
. ( 22 )

and obtain u2 .
This process can be continued to obtain u3 , u4 , � with u2 k+ 1 defined on Ω 1 and u2 k defined on

Ω 2 .

2 . By strong maximum principle we have u2 6 M and in particular u2 6 u1 on γ2 . This implies

u2 6 u1 on Ω 1 ∩ Ω2 . ( 23)

Next comparing the boundary values of u1 , and u3 and using maximum principle, we have

u3 6 u1 on Ω 1 . ( 24)

Comparing the values of u2 and u3 on γ1 ∪ γ2 we have

u3 6 u2 on Ω 1 ∩ Ω2 . ( 25)

Comparing the values of u2 and u4 on ∂Ω2 = Γ2 ∪ γ2 we obtain

u4 6 u2 on Ω 2 . ( 26)

3. In general, we have

u1 > u3 > � on Ω 1 ; u2 > u4 > � on Ω2 ; u1 > u2 > � on Ω 1 ∩ Ω2 . ( 27)

Therefore there is u on Ω 1 ∪ Ω2 such that

u =

{
lim u2 k+ 1 Ω 1

lim u2 k Ω2
. ( 28)

2 . Note that the boundary value here may not be continuous. But it is still bounded and the Perron construct ion still
works with convergence to boundary values only fail at discontinuous points .



Using Harnack inequality we can conclude that the convergence is locally uniform which means u is
harmonic.

4. Next we show that u is continuous up to the boundary except for those points in ∂Ω 1 ∩ ∂Ω2 . We
can start from

4v1 = 0 in Ω 1 , v1 =

{
g Γ1

m γ1
( 29)

and obtain a increasing sequence { vn } . It is clear that vn 6 un and therefore u is between each pair
of ( vn , un) . The continuity of vn , un up to boundary then gives the continuity of u , except for those
points in ∂Ω 1 ∩ ∂Ω2 .

5 . To show continuity at ∂Ω 1 ∩ ∂Ω2 , one has to modify the iteration process. Instead of using M on
γ1 to obtain u1 , we use a continuous extension of g . This way we can still obtain {un } but the
monotonicity relation does not hold anymore. Instead, we show that

(u2n+ 3 − u2n+ 1 )

maxγ1 | u2n+ 2 − u2n |
6 q < 1 , on γ2 ( 30)

for a uniform q . This, combined with the maximum principle, implies un+ 1 − un converges to 0 as
fast as the geometric series qn , which in turn gives uniform convergence of the sequence.

For details of the last step, see § 3. 3, 3. 4 of J. Jost Partial Differential Equations , GTM 21 4. 3 �

Further readings.

• J. Jost, Partial Differential Equations , Chap. 3.

Exercise.

Exercise 1 . Let v be subharmonic in Ω , if there is x0 ∈ Ω with v ( x0 ) = supΩ v (x ) , then v is constant ( If you are not
comfortable with upper semicontinuity, just assume v to be continuous) . In particular, if v ∈ C0 ( Ω) , then v( x ) 6
max∂Ω v ( y) for all x ∈ Ω .

Exercise 2 . Prove: If v1 , � , vk are subharmonic in Ω , so is v ≡ max {v1 , � , vk } .

3 . The key lemma is the following: There exists 0 < q < 1 depending on Ω 1 , Ω2 , such that if w : Ω 1
� R is harmonic in Ω 1 ,

and continuous on the closure Ω 1 , with w = 0 on Γ 1 , | w | 6 1 on γ1 , then

| w | 6 q on γ2 . ( 3 1 )

A corresponding result holds if Ω 1 is replaced by Ω2 .


